Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Aging (Albany NY) ; 14(10): 4195-4210, 2022 05 23.
Article in English | MEDLINE | ID: covidwho-1863474

ABSTRACT

Previous studies have shown that the polyamine spermidine increased the maximum life span in C. elegans and the median life span in mice. Since spermidine increases autophagy, we asked if treatment with chloroquine, an inhibitor of autophagy, would shorten the lifespan of mice. Recently, chloroquine has intensively been discussed as a treatment option for COVID-19 patients. To rule out unfavorable long-term effects on longevity, we examined the effect of chronic treatment with chloroquine given in the drinking water on the lifespan and organ pathology of male middle-aged NMRI mice. We report that, surprisingly, daily treatment with chloroquine extended the median life span by 11.4% and the maximum life span of the middle-aged male NMRI mice by 11.8%. Subsequent experiments show that the chloroquine-induced lifespan elevation is associated with dose-dependent increase in LC3B-II, a marker of autophagosomes, in the liver and heart that was confirmed by transmission electron microscopy. Quite intriguingly, chloroquine treatment was also associated with a decrease in glycogenolysis in the liver suggesting a compensatory mechanism to provide energy to the cell. Accumulation of autophagosomes was paralleled by an inhibition of proteasome-dependent proteolysis in the liver and the heart as well as with decreased serum levels of insulin growth factor binding protein-3 (IGFBP3), a protein associated with longevity. We propose that inhibition of proteasome activity in conjunction with an increased number of autophagosomes and decreased levels of IGFBP3 might play a central role in lifespan extension by chloroquine in male NMRI mice.


Subject(s)
Autophagy , Chloroquine , Glycogenolysis , Longevity , Proteasome Endopeptidase Complex , Proteasome Inhibitors , Animals , Autophagy/drug effects , Chloroquine/pharmacology , Glycogen , Glycogenolysis/drug effects , Longevity/drug effects , Male , Mice , Proteasome Inhibitors/pharmacology , Spermidine/pharmacology , COVID-19 Drug Treatment
2.
Mol Immunol ; 140: 175-185, 2021 12.
Article in English | MEDLINE | ID: covidwho-1851816

ABSTRACT

SFN, a dietary phytochemical, is a significant member of isothiocyanates present in cruciferous vegetables at high levels in broccoli. It is a well-known activator of the Nrf2/ARE antioxidant pathway. Long since, the therapeutic effects of SFN have been widely studied in several different diseases. Other than the antioxidant effect, SFN also exhibits an anti-inflammatory effect through suppression of various mechanisms, including inflammasome activation. Considerably, SFN has been demonstrated to inhibit multiple inflammasomes, including NLRP3 inflammasome. NLRP3 inflammasome induces secretion of pro-inflammatory cytokines and promotes inflammatory cell death. The release of pro-inflammatory cytokines enhances the inflammatory response, in turn leading to tissue damage. These self-propelling inflammatory responses would need modulation with exogenous therapeutic agents to suppress them. SFN is a promising candidate molecule for the mitigation of NLRP3 inflammasome activation, which has been related to the pathogenesis of numerous disorders. In this review, we have provided fundamental knowledge about Sulforaphane, elaborated its characteristics, and evidentially focused on its mechanisms of action with regard to its anti-inflammatory, anti-oxidative, and neuroprotective features. Thereafter, we have summarized both in vitro and in vivo studies regarding SFN effect on NLRP3 inflammasome activation.


Subject(s)
Inflammasomes/metabolism , Isothiocyanates/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sulfoxides/pharmacology , Animals , Autophagy/drug effects , Epigenesis, Genetic/drug effects , Humans , Neurogenesis/drug effects
3.
Front Immunol ; 13: 829474, 2022.
Article in English | MEDLINE | ID: covidwho-1731781

ABSTRACT

The SARS-CoV-2 infection triggers host kinases and is responsible for heavy phosphorylation in the host and also in the virus. Notably, phosphorylations in virus were achieved using the host enzyme for its better survival and further mutations. We have attempted to study and understand the changes that happened in phosphorylation during and post SARS-CoV-2 infection. There were about 70 phosphorylation sites detected in SARS-CoV-2 viral proteins including N, M, S, 3a, and 9b. Furthermore, more than 15,000 host phosphorylation sites were observed in SARS-CoV-2-infected cells. SARS-CoV-2 affects several kinases including CMGC, CK2, CDK, PKC, PIKFYVE, and EIF2AK2. Furthermore, SARS-CoV-2 regulates various signaling pathways including MAPK, GFR signaling, TGF-ß, autophagy, and AKT. These elevated kinases and signaling pathways can be potential therapeutic targets for anti-COVID-19 drug discovery. Specific inhibitors of these kinases and interconnected signaling proteins have great potential to cure COVID-19 patients and slow down the ongoing COVID-19 pandemic.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Phosphorylation/drug effects , Autophagy/drug effects , Humans , Signal Transduction/drug effects
4.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1637017

ABSTRACT

Malignant melanoma is still a serious medical problem. Relatively high mortality, a still-growing number of newly diagnosed cases, and insufficiently effective methods of therapy necessitate melanoma research. Tetracyclines are compounds with pleiotropic pharmacological properties. Previously published studies on melanotic melanoma cells ascertained that minocycline and doxycycline exerted an anti-melanoma effect. The purpose of the study was to assess the anti-melanoma potential and mechanisms of action of minocycline and doxycycline using A375 and C32 human amelanotic melanoma cell lines. The obtained results indicate that the tested drugs inhibited proliferation, decreased cell viability, and induced apoptosis in amelanotic melanoma cells. The treatment caused changes in the cell cycle profile and decreased the intracellular level of reduced thiols and mitochondrial membrane potential. The exposure of A375 and C32 cells to minocycline and doxycycline triggered the release of cytochrome c and activated initiator and effector caspases. The anti-melanoma effect of analyzed drugs appeared to be related to the up-regulation of ERK1/2 and MITF. Moreover, it was noticed that minocycline and doxycycline increased the level of LC3A/B, an autophagy marker, in A375 cells. In summary, the study showed the pleiotropic anti-cancer action of minocycline and doxycycline against amelanotic melanoma cells. Considering all results, it could be concluded that doxycycline was a more potent drug than minocycline.


Subject(s)
Antineoplastic Agents/pharmacology , Doxycycline/pharmacology , Minocycline/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Biomarkers, Tumor , Caspases/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Melanoma, Amelanotic , Membrane Potential, Mitochondrial/drug effects
5.
Cells ; 10(12)2021 11 28.
Article in English | MEDLINE | ID: covidwho-1598211

ABSTRACT

Drug repositioning is one of the leading strategies in modern therapeutic research. Instead of searching for completely novel substances and demanding studies of their biological effects, much attention has been paid to the evaluation of commonly used drugs, which could be utilized for more distinct indications than they have been approved for. Since treatment approaches for cancer, one of the most extensively studied diseases, have still been very limited, great effort has been made to find or repurpose novel anticancer therapeutics. One of these are cardiac glycosides, substances commonly used to treat congestive heart failure or various arrhythmias. Recently, the antitumor properties of cardiac glycosides have been discovered and, therefore, these compounds are being considered for anticancer therapy. Their mechanism of antitumor action seems to be rather complex and not fully uncovered yet, however, autophagy has been confirmed to play a key role in this process. In this review article, we report on the up-to-date knowledge of the anticancer activity of cardiac glycosides with special attention paid to autophagy induction, the molecular mechanisms of this process, and the potential employment of this phenomenon in clinical practice.


Subject(s)
Autophagy , Cardiac Glycosides/pharmacology , Animals , Apoptosis/drug effects , Autophagy/drug effects , Biomarkers/metabolism , Humans , Models, Biological , Sodium-Potassium-Exchanging ATPase/metabolism
6.
Commun Biol ; 4(1): 1076, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1550352

ABSTRACT

Lysine-selective molecular tweezers are promising drug candidates against proteinopathies, viral infection, and bacterial biofilm. Despite demonstration of their efficacy in multiple cellular and animal models, important questions regarding their mechanism of action, including cell penetrance and intracellular distribution, have not been answered to date. The main impediment to answering these questions has been the low intrinsic fluorescence of the main compound tested to date, called CLR01. Here, we address these questions using new fluorescently labeled molecular tweezers derivatives. We show that these compounds are internalized in neurons and astrocytes, at least partially through dynamin-dependent endocytosis. In addition, we demonstrate that the molecular tweezers concentrate rapidly in acidic compartments, primarily lysosomes. Accumulation of molecular tweezers in lysosomes may occur both through the endosomal-lysosomal pathway and via the autophagy-lysosome pathway. Moreover, by visualizing colocalization of molecular tweezers, lysosomes, and tau aggregates we show that lysosomes likely are the main site for the intracellular anti-amyloid activity of molecular tweezers. These findings have important implications for the mechanism of action of molecular tweezers in vivo, explaining how administration of low doses of the compounds achieves high effective concentrations where they are needed, and supporting the development of these compounds as drugs for currently cureless proteinopathies.


Subject(s)
Astrocytes/metabolism , Bridged-Ring Compounds/metabolism , Endosomes/metabolism , Lysine/metabolism , Lysosomes/metabolism , Neurons/metabolism , Organophosphates/metabolism , Animals , Autophagy/drug effects , Cell Line, Tumor , Humans , Mice , Mice, Inbred C57BL
7.
J Cell Biochem ; 123(2): 155-160, 2022 02.
Article in English | MEDLINE | ID: covidwho-1473858

ABSTRACT

Drug repurposing is an attractive option for identifying new treatment strategies, in particular in extraordinary situations of urgent need such as the current coronavirus disease 2019 (Covid-19) pandemic. Recently, the World Health Organization announced testing of three drugs as potential Covid-19 therapeutics that are known for their dampening effect on the immune system. Thus, the underlying concept of selecting these drugs is to temper the potentially life-threatening overshooting of the immune system reacting to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. This viewpoint discusses the possibility that the impact of these and other drugs on autophagy contributes to their therapeutic effect by hampering the SARS-CoV-2 life cycle.


Subject(s)
Antiviral Agents/pharmacology , Artesunate/pharmacology , Autophagy/drug effects , COVID-19 Drug Treatment , Drug Repositioning , Imatinib Mesylate/pharmacology , Infliximab/pharmacology , Pandemics , SARS-CoV-2/drug effects , Antidepressive Agents/pharmacology , Antiviral Agents/therapeutic use , Artesunate/therapeutic use , Chloroquine/pharmacology , Drug Development , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum/virology , Endosomes/drug effects , Endosomes/virology , Humans , Hydroxychloroquine/pharmacology , Imatinib Mesylate/therapeutic use , Infliximab/therapeutic use , Intracellular Membranes/drug effects , Intracellular Membranes/physiology , Intracellular Membranes/virology , Ivermectin/pharmacology , Macrolides/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Niclosamide/pharmacology , Niclosamide/therapeutic use , RNA, Viral/metabolism , SARS-CoV-2/physiology , Virus Replication
8.
Nat Commun ; 12(1): 5536, 2021 09 20.
Article in English | MEDLINE | ID: covidwho-1428813

ABSTRACT

Coronaviruses (CoVs) are important human pathogens for which no specific treatment is available. Here, we provide evidence that pharmacological reprogramming of ER stress pathways can be exploited to suppress CoV replication. The ER stress inducer thapsigargin efficiently inhibits coronavirus (HCoV-229E, MERS-CoV, SARS-CoV-2) replication in different cell types including primary differentiated human bronchial epithelial cells, (partially) reverses the virus-induced translational shut-down, improves viability of infected cells and counteracts the CoV-mediated downregulation of IRE1α and the ER chaperone BiP. Proteome-wide analyses revealed specific pathways, protein networks and components that likely mediate the thapsigargin-induced antiviral state, including essential (HERPUD1) or novel (UBA6 and ZNF622) factors of ER quality control, and ER-associated protein degradation complexes. Additionally, thapsigargin blocks the CoV-induced selective autophagic flux involving p62/SQSTM1. The data show that thapsigargin hits several central mechanisms required for CoV replication, suggesting that this compound (or derivatives thereof) may be developed into broad-spectrum anti-CoV drugs.


Subject(s)
Endoplasmic Reticulum Stress , SARS-CoV-2/physiology , Virus Replication/physiology , Animals , Autophagy/drug effects , Bronchi/pathology , COVID-19/pathology , COVID-19/virology , Cell Differentiation/drug effects , Cell Extracts , Cell Line , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus 229E, Human/physiology , Down-Regulation/drug effects , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum-Associated Degradation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/virology , Heat-Shock Proteins/metabolism , Humans , Macrolides/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , Protein Biosynthesis/drug effects , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , SARS-CoV-2/drug effects , Thapsigargin/pharmacology , Unfolded Protein Response/drug effects , Vero Cells , Virus Replication/drug effects
9.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: covidwho-1335100

ABSTRACT

Mitochondria are vital intracellular organelles that play an important role in regulating various intracellular events such as metabolism, bioenergetics, cell death (apoptosis), and innate immune signaling. Mitochondrial fission, fusion, and membrane potential play a central role in maintaining mitochondrial dynamics and the overall shape of mitochondria. Viruses change the dynamics of the mitochondria by altering the mitochondrial processes/functions, such as autophagy, mitophagy, and enzymes involved in metabolism. In addition, viruses decrease the supply of energy to the mitochondria in the form of ATP, causing viruses to create cellular stress by generating ROS in mitochondria to instigate viral proliferation, a process which causes both intra- and extra-mitochondrial damage. SARS-COV2 propagates through altering or changing various pathways, such as autophagy, UPR stress, MPTP and NLRP3 inflammasome. Thus, these pathways act as potential targets for viruses to facilitate their proliferation. Autophagy plays an essential role in SARS-COV2-mediated COVID-19 and modulates autophagy by using various drugs that act on potential targets of the virus to inhibit and treat viral infection. Modulated autophagy inhibits coronavirus replication; thus, it becomes a promising target for anti-coronaviral therapy. This review gives immense knowledge about the infections, mitochondrial modulations, and therapeutic targets of viruses.


Subject(s)
Autophagy , COVID-19/metabolism , Mitochondria/metabolism , Mitochondria/virology , Animals , Autophagy/drug effects , Humans , Mitochondrial Dynamics/drug effects , Mitophagy/drug effects , Virus Diseases/drug therapy , Virus Diseases/metabolism , COVID-19 Drug Treatment
10.
Nanomedicine ; 37: 102422, 2021 10.
Article in English | MEDLINE | ID: covidwho-1283501

ABSTRACT

As mitochondria network together to act as the master sensors and effectors of apoptosis, ATP production, reactive oxygen species management, mitophagy/autophagy, and homeostasis; this organelle is an ideal target for pharmaceutical manipulation. Mitochondrial dysfunction contributes to many diseases, for example, ß-amyloid has been shown to interfere with mitochondrial protein import and induce apoptosis in Alzheimer's Disease while some forms of Parkinson's Disease are associated with dysfunctional mitochondrial PINK1 and Parkin proteins. Mitochondrial medicine has applications in the treatment of an array of pathologies from cancer to cardiovascular disease. A challenge of mitochondrial medicine is directing therapies to a subcellular target. Nanotechnology based approaches combined with mitochondrial targeting strategies can greatly improve the clinical translation and effectiveness of mitochondrial medicine. This review discusses mitochondrial drug delivery approaches and applications of mitochondrial nanomedicines. Nanomedicine approaches have the potential to drive the success of mitochondrial therapies into the clinic.


Subject(s)
Alzheimer Disease/drug therapy , Mitochondria/drug effects , Nanomedicine , Parkinson Disease/drug therapy , Adenosine Triphosphate/biosynthesis , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Autophagy/drug effects , Autophagy/genetics , Humans , Mitochondria/genetics , Mitophagy/drug effects , Mitophagy/genetics , Parkinson Disease/genetics , Parkinson Disease/pathology , Reactive Oxygen Species
11.
Int J Mol Sci ; 22(11)2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-1259507

ABSTRACT

The COVID-19 pandemic is caused by the 2019-nCoV/SARS-CoV-2 virus. This severe acute respiratory syndrome is currently a global health emergency and needs much effort to generate an urgent practical treatment to reduce COVID-19 complications and mortality in humans. Viral infection activates various cellular responses in infected cells, including cellular stress responses such as unfolded protein response (UPR) and autophagy, following the inhibition of mTOR. Both UPR and autophagy mechanisms are involved in cellular and tissue homeostasis, apoptosis, innate immunity modulation, and clearance of pathogens such as viral particles. However, during an evolutionary arms race, viruses gain the ability to subvert autophagy and UPR for their benefit. SARS-CoV-2 can enter host cells through binding to cell surface receptors, including angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1). ACE2 blockage increases autophagy through mTOR inhibition, leading to gastrointestinal complications during SARS-CoV-2 virus infection. NRP1 is also regulated by the mTOR pathway. An increased NRP1 can enhance the susceptibility of immune system dendritic cells (DCs) to SARS-CoV-2 and induce cytokine storm, which is related to high COVID-19 mortality. Therefore, signaling pathways such as mTOR, UPR, and autophagy may be potential therapeutic targets for COVID-19. Hence, extensive investigations are required to confirm these potentials. Since there is currently no specific treatment for COVID-19 infection, we sought to review and discuss the important roles of autophagy, UPR, and mTOR mechanisms in the regulation of cellular responses to coronavirus infection to help identify new antiviral modalities against SARS-CoV-2 virus.


Subject(s)
Autophagy , COVID-19/pathology , Neuropilin-1/metabolism , Unfolded Protein Response , Antiviral Agents/pharmacology , Autophagy/drug effects , COVID-19/virology , Humans , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Signal Transduction/drug effects , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism
12.
Cells ; 10(5)2021 05 06.
Article in English | MEDLINE | ID: covidwho-1223960

ABSTRACT

Viral pathogens often exploit host cell regulatory and signaling pathways to ensure an optimal environment for growth and survival. Several studies have suggested that 5'-adenosine monophosphate-activated protein kinase (AMPK), an intracellular serine/threonine kinase, plays a significant role in the modulation of infection. Traditionally, AMPK is a key energy regulator of cell growth and proliferation, host autophagy, stress responses, metabolic reprogramming, mitochondrial homeostasis, fatty acid ß-oxidation and host immune function. In this review, we highlight the modulation of host AMPK by various viruses under physiological conditions. These intracellular pathogens trigger metabolic changes altering AMPK signaling activity that then facilitates or inhibits viral replication. Considering the COVID-19 pandemic, understanding the regulation of AMPK signaling following infection can shed light on the development of more effective therapeutic strategies against viral infectious diseases.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antiviral Agents/pharmacology , Signal Transduction/immunology , Virus Diseases/immunology , Antiviral Agents/therapeutic use , Autophagy/drug effects , Autophagy/immunology , COVID-19/epidemiology , COVID-19/immunology , Cell Proliferation/drug effects , Drug Development , Humans , Pandemics/prevention & control , SARS-CoV-2/immunology , Signal Transduction/drug effects , Virus Diseases/drug therapy , Virus Replication/drug effects , Virus Replication/immunology , COVID-19 Drug Treatment
13.
J Med Virol ; 93(4): 2076-2083, 2021 04.
Article in English | MEDLINE | ID: covidwho-1217369

ABSTRACT

The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the coronavirus disease 19 (COVID-19) pandemic due to its high transmissibility and early immunosuppression. Previous studies on other betacoronaviruses suggested that betacoronavirus infection is associated with the host autophagy pathway. However, it is unclear whether any components of autophagy or virophagy can be therapeutic targets for COVID-19 treatment. In this report, we examined the antiviral effect of four well-characterized small molecule inhibitors that target the key cellular factors involved in key steps of the autophagy pathway. They include small molecules targeting the ULK1/Atg1 complex involved in the induction stage of autophagy (ULK1 inhibitor SBI0206965), the ATG14/Beclin1/VPS34 complex involved in the nucleation step of autophagy (class III PI3-kinase inhibitor VPS34-IN1), and a widely-used autophagy inhibitor that persistently inhibits class I and temporary inhibits class III PI3-kinase (3-MA) and a clinically approved autophagy inhibitor that suppresses autophagy by inhibiting lysosomal acidification and prevents the formation of autophagolysosome (HCQ). Surprisingly, not all the tested autophagy inhibitors suppressed SARS-CoV-2 infection. We showed that inhibition of class III PI3-kinase involved in the initiation step of both canonical and noncanonical autophagy potently suppressed SARS-CoV-2 at a nano-molar level. In addition, this specific kinase inhibitor VPS34-IN1, and its bioavailable analogue VVPS34-IN1, potently inhibited SARS-CoV-2 infection in ex vivo human lung tissues. Taken together, class III PI3-kinase may be a possible target for COVID-19 therapeutic development.


Subject(s)
Antiviral Agents/pharmacology , Autophagy/drug effects , COVID-19 Drug Treatment , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Lung , Protein Kinase Inhibitors/pharmacology , Adaptor Proteins, Vesicular Transport/antagonists & inhibitors , Animals , Autophagy-Related Protein-1 Homolog/antagonists & inhibitors , Autophagy-Related Proteins/antagonists & inhibitors , Chlorocebus aethiops , Drug Repositioning , Humans , In Vitro Techniques , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Lung/drug effects , Lung/pathology , Lung/virology , Vero Cells
14.
Nature ; 594(7862): 246-252, 2021 06.
Article in English | MEDLINE | ID: covidwho-1180252

ABSTRACT

The emergence and global spread of SARS-CoV-2 has resulted in the urgent need for an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several individual omics studies have extended our knowledge of COVID-19 pathophysiology1-10. Integration of such datasets to obtain a holistic view of virus-host interactions and to define the pathogenic properties of SARS-CoV-2 is limited by the heterogeneity of the experimental systems. Here we report a concurrent multi-omics study of SARS-CoV-2 and SARS-CoV. Using state-of-the-art proteomics, we profiled the interactomes of both viruses, as well as their influence on the transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed crosstalk between the perturbations taking place upon infection with SARS-CoV-2 and SARS-CoV at different levels and enabled identification of distinct and common molecular mechanisms of these closely related coronaviruses. The TGF-ß pathway, known for its involvement in tissue fibrosis, was specifically dysregulated by SARS-CoV-2 ORF8 and autophagy was specifically dysregulated by SARS-CoV-2 ORF3. The extensive dataset (available at https://covinet.innatelab.org ) highlights many hotspots that could be targeted by existing drugs and may be used to guide rational design of virus- and host-directed therapies, which we exemplify by identifying inhibitors of kinases and matrix metalloproteases with potent antiviral effects against SARS-CoV-2.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions , Proteome/metabolism , Proteomics , SARS-CoV-2/pathogenicity , Severe Acute Respiratory Syndrome/metabolism , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Animals , Antiviral Agents/pharmacology , Autophagy/drug effects , COVID-19/immunology , COVID-19/virology , Cell Line , Datasets as Topic , Drug Evaluation, Preclinical , Host-Pathogen Interactions/immunology , Humans , Matrix Metalloproteinase Inhibitors/pharmacology , Phosphorylation , Protein Interaction Maps , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational , Proteome/chemistry , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Transforming Growth Factor beta/metabolism , Ubiquitination , Viral Proteins/chemistry , Viral Proteins/metabolism , Viroporin Proteins/metabolism
15.
Sci Rep ; 11(1): 6725, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1149749

ABSTRACT

The recent global pandemic of the Coronavirus disease 2019 (COVID-19) caused by the new coronavirus SARS-CoV-2 presents an urgent need for the development of new therapeutic candidates. Many efforts have been devoted to screening existing drug libraries with the hope to repurpose approved drugs as potential treatments for COVID-19. However, the antiviral mechanisms of action of the drugs found active in these phenotypic screens remain largely unknown. In an effort to deconvolute the viral targets in pursuit of more effective anti-COVID-19 drug development, we mined our in-house database of approved drug screens against 994 assays and compared their activity profiles with the drug activity profile in a cytopathic effect (CPE) assay of SARS-CoV-2. We found that the autophagy and AP-1 signaling pathway activity profiles are significantly correlated with the anti-SARS-CoV-2 activity profile. In addition, a class of neurology/psychiatry drugs was found to be significantly enriched with anti-SARS-CoV-2 activity. Taken together, these results provide new insights into SARS-CoV-2 infection and potential targets for COVID-19 therapeutics, which can be further validated by in vivo animal studies and human clinical trials.


Subject(s)
COVID-19 Drug Treatment , COVID-19/metabolism , Data Mining/methods , Transcription Factor AP-1/metabolism , Animals , Antiviral Agents/pharmacology , Autophagy/drug effects , Autophagy/physiology , COVID-19/epidemiology , COVID-19/genetics , Chlorocebus aethiops , Databases, Genetic , Drug Approval , Drug Evaluation, Preclinical/methods , Drug Repositioning/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Molecular Targeted Therapy , Pandemics , SARS-CoV-2/isolation & purification , Vero Cells
16.
Int J Mol Sci ; 22(5)2021 Mar 05.
Article in English | MEDLINE | ID: covidwho-1129733

ABSTRACT

While there are various kinds of drugs for type 2 diabetes mellitus at present, in this review article, we focus on metformin which is an insulin sensitizer and is often used as a first-choice drug worldwide. Metformin mainly activates adenosine monophosphate-activated protein kinase (AMPK) in the liver which leads to suppression of fatty acid synthesis and gluconeogenesis. Metformin activates AMPK in skeletal muscle as well, which increases translocation of glucose transporter 4 to the cell membrane and thereby increases glucose uptake. Further, metformin suppresses glucagon signaling in the liver by suppressing adenylate cyclase which leads to suppression of gluconeogenesis. In addition, metformin reduces autophagy failure observed in pancreatic ß-cells under diabetic conditions. Furthermore, it is known that metformin alters the gut microbiome and facilitates the transport of glucose from the circulation into excrement. It is also known that metformin reduces food intake and lowers body weight by increasing circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15). Furthermore, much attention has been drawn to the fact that the frequency of various cancers is lower in subjects taking metformin. Metformin suppresses the mechanistic target of rapamycin (mTOR) by activating AMPK in pre-neoplastic cells, which leads to suppression of cell growth and an increase in apoptosis in pre-neoplastic cells. It has been shown recently that metformin consumption potentially influences the mortality in patients with type 2 diabetes mellitus and coronavirus infectious disease (COVID-19). Taken together, metformin is an old drug, but multifaceted mechanisms of action of metformin have been unraveled one after another in its long history.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Metformin/pharmacology , Autophagy/drug effects , COVID-19/complications , COVID-19/mortality , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/mortality , Gastrointestinal Microbiome/drug effects , Humans , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Intracellular Signaling Peptides and Proteins/drug effects , Intracellular Signaling Peptides and Proteins/metabolism
17.
Med Hypotheses ; 146: 110434, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1065479

ABSTRACT

Cancer cachexia (CC) is a progressive loss of muscle mass (with or without a decrease of adipose tissue). Gradual deterioration of the patient's fitness is resistant to nutritional intervention. The biochemical foundation of observed catabolism, detrimental protein, and energy balance is complex. However, the generalized inflammatory response plays a vital role. It is a kind of cytokine storm, which involves increased activity of TNF-α, IL-1, IL-6, and INF-γ. Pharmacological treatment of cachexia consists mainly of progestagens and glucocorticosteroids. Still, the assessment of new options limiting the harmful impact of cachexia could be beneficial. Chloroquine (CQ) and hydroxychloroquine (HCQ) are old antimalarial agents endowed with immunomodulatory properties. Being potent autophagy inhibitors, they could lead to a form of intracellular starvation in both cytokine-releasing cells and cancer cells, thus limiting the harmful impact of CC. CQ and HCQ are also efficient in particular connective tissue disorders. They have gained special attention since the World Health Organization announced the coronavirus disease 2019 (COVID-19) pandemic. According to initial reports, people with a severe inflammatory reaction showed significant benefits. Possibly they could not be attributed to the antiviral activity alone. It is worth noting that the cytokine storm in COVID-19, connective tissue disorders, and cancer cachexia share some similarities. Therefore, we hypothesize that low doses of CQ/HCQ may prove efficient in cancer cachexia.


Subject(s)
Cachexia/drug therapy , Cachexia/etiology , Chloroquine/therapeutic use , Hydroxychloroquine/therapeutic use , Models, Biological , Neoplasms/complications , Autophagy/drug effects , Autophagy/immunology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Cytokines/immunology , Humans , Immunologic Factors/therapeutic use , Pandemics , SARS-CoV-2 , COVID-19 Drug Treatment
18.
Eur J Pharmacol ; 897: 173928, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-1062328

ABSTRACT

The recent SARS-CoV-2 pandemic poses one of the greatest challenges to modern medicine. Therefore, identification of new therapeutic strategies seems essential either based on novel vaccines or drugs or simply repurposing existing drugs. Notably, due to their known safety profile, repurposing of existing drugs is the fastest and highly efficient approach to bring a therapeutic to a clinic for any new indication. One such drug that has been used extensively for decades is chloroquine (CQ, with its derivatives) either for malaria, lupus and rheumatoid arthritis. Accumulating body of evidence from experimental pharmacology suggests that CQ and related analogues also activate certain pathways that can potentially be exploited for therapeutic gain. For example, in the airways, this has opened an attractive avenue for developing novel bitter taste ligands as a new class of bronchodilators for asthma. While CQ and its derivatives have been proposed as a therapy in COVID-19, it remains to be seen whether it really work in the clinic? To this end, our perspective aims to provide a timely yet brief insights on the existing literature on CQ and the controversies surrounding its use in COVID-19. Further, we also highlight some of cell-based mechanism(s) that CQ and its derivatives affect in mediating variety of physiological responses in the cell. We believe, data emanating from the clinical studies and continual understanding of the fundamental mechanisms may potentially help in designing effective therapeutic strategies that meets both efficacy and safety criteria for COVID-19.


Subject(s)
Antimalarials/therapeutic use , Autophagy/drug effects , COVID-19 Drug Treatment , Chloroquine/therapeutic use , Taste/drug effects , Drug Repositioning , Humans
19.
Antiviral Res ; 187: 105015, 2021 03.
Article in English | MEDLINE | ID: covidwho-1023450

ABSTRACT

The newly emerged severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) coronavirus initiated a pneumonia outbreak (COVID-19) that rapidly spread worldwide and quickly became a public health emergency of international concern; However to date, except Remdesivir, there are no clinically approved specific or effective medicines to prevent or treat COVID-19. Therefore, the development of novel treatments against coronavirus infections caused by the current SARS-CoV-2 virus, as well as other highly pathogenic human coronaviruses, represents an urgent unmet need. Stimulator of interferon genes (STING) plays a central role in host defense mechanisms against microbial infections. STING activation leads to the induction of both type I interferon and autophagy responses, which elicit strong inhibitory effect against the infections caused by a broad range of microbial pathogens. However, whether STING activation can impact infections from SARS-CoV-2 or other coronaviruses remains largely unknown. In this study, we investigated the anti-coronavirus activity triggered by STING activation. We discovered that dimeric amidobenzimidazole (diABZI), a synthetic small molecule STING receptor agonist, showed potent anti-coronavirus activity against both the common cold human coronavirus 229E (HCoV-229E) and SARS-CoV-2 in cell culture systems. In addition, we demonstrated that the antiviral activity of diABZI was dependent on the interferon pathway in HCoV-229E infected normal human fibroblast lung cells (MRC-5) and reconstituted primary human airway air-liquid interface (ALI) cultures. Furthermore, low-dose of diABZI treatment at 0.1 µM effectively reduced the SARS-CoV-2 viral load at the epithelial apical surface and prevented epithelial damage in the reconstituted primary human bronchial airway epithelial ALI system. Our findings have thus revealed the therapeutic potential of STING agonists, such as diABZI, as treatments for SARS-CoV-2 and other human coronavirus infections.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , COVID-19 Drug Treatment , Coronavirus 229E, Human/drug effects , Coronavirus Infections/drug therapy , Membrane Proteins/agonists , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Antiviral Agents/chemistry , Autophagy/drug effects , Bronchi/virology , COVID-19/virology , Cell Line , Coronavirus Infections/virology , Epithelial Cells/virology , Humans , Interferon Type I/pharmacology , Lung/virology , Virus Replication
20.
Cells ; 9(12)2020 12 13.
Article in English | MEDLINE | ID: covidwho-970828

ABSTRACT

Currently, an efficient treatment for COVID-19 is still unavailable, and people are continuing to die from complications associated with SARS-CoV-2 infection. Thus, the development of new therapeutic approaches is urgently needed, and one alternative is to target the mechanisms of autophagy. Due to its multifaceted role in physiological processes, many questions remain unanswered about the possible advantages of inhibiting or activating autophagy. Based on a search of the literature in this field, a novel analysis has been made to highlight the relation between the mechanisms of autophagy in antiviral and inflammatory activity in contrast with those of the pathogenesis of COVID-19. The present analysis reveals a remarkable coincidence between the uncontrolled inflammation triggered by SARS-CoV-2 and autophagy defects. Particularly, there is conclusive evidence about the substantial contribution of two concomitant factors to the development of severe COVID-19: a delayed or absent type I and III interferon (IFN-I and IFN-III) response together with robust cytokine and chemokine production. In addition, a negative interplay exists between autophagy and an IFN-I response. According to previous studies, the clinical decision to inhibit or activate autophagy should depend on the underlying context of the pathological timeline of COVID-19. Several treatment options are herein discussed as a guide for future research on this topic.


Subject(s)
Anti-Inflammatory Agents , Antiviral Agents , Autophagy/drug effects , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans
SELECTION OF CITATIONS
SEARCH DETAIL